
Kits

Burglar Alarm

(clothes-peg switch, trip-wire, electricity, multimeters, series and parallel circuits) 1 hour

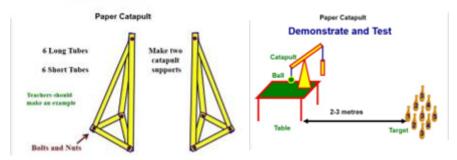
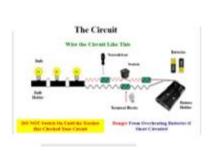


Table Tennis Ball Launcher (motors, correct wiring) 1/2 hour



Paper Roman Catapults

(requires recycled A4, nuts and bolts etc. provided – secondary pupils have to do a design and budget and are marked on these and also their score) (Primary $1\frac{1}{2}$ hrs. Secondary $2\frac{1}{2}$ hrs.)

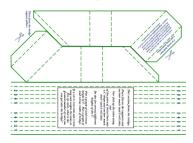
Why Lag Your House 1/2 - 1 hour

Arithmetic Bricks

1 hour

also used for Indices and Pi

1 hour


Calculate Pi by weighing water (area and volume – specific gravity of water is 1) 1 hour

School to provide ug, 20cm diam. pot, string, bucket and ball

Paper Bridges

(just print the A4 plans, ask children to bring toy cars) ½ - 1 Hour

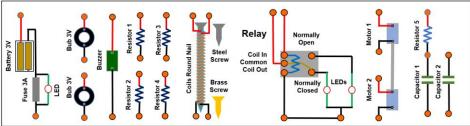
BBC Micro:bit Traffic Lights

up to 2 hours

Free to borrow locally Contact enquiries@schoolsliaisoncommunity.net

Recycled Paper Towers and Bridges

(A4, nuts and bolts etc. provided, pupils bring in toy cars as for the bridges above) 1 hour


http://www.dwiller.com/Challenges/Paper%20Towers%20and%20Bridges%20-%20Primary%20Version.pptx

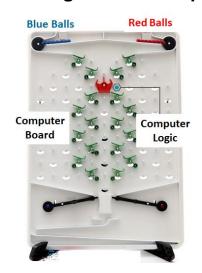
http://www.dwiller.com/Challenges/Paper%20Towers%20and%20Bridges%20-%20Secondary.pptx

DC Current Tutorial

This is a schematic of the circuit board which you will use.

http://www.dwiller.com/Challenges/DC-Current-Kit.pptx

Lets Be Specific About Gravity 1 hour +



Sir "Irate" Newton

http://www.dwiller.com/Challenges/Lets%20Be%20Specific%20About%20Gravity%20Mass-Volume-Density.pptx

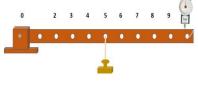
Turing Tumble Computer

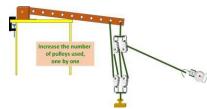
We have four kits available to lend.

They demonstrate computer logic as balls fall from top to bottom.

There is a book of examples.

PPT has two activities.


- Dropping balls alternately.
- Binary addition


http://www.dwiller.com/Challenges/Secondary%20Challenges/TuringTumble.pptx

Levers Alone - Don't Pulley My Leg

Magic Cards

Card tricks which use algebra to solve

Card tricks which use algebra to solve

http://www.dwiller.com/Challenges/Card%20Trick.pptx http://www.dwiller.com/book/

Robots

Construct a "working" robot using KNex, elastic bands and string

(School to provide the KNex, etc.)

http://www.dwiller.com/Challenges/RobotChallenge.pptx

VEX Robots

From ASE Contact dw@dwiller.com

Electricity Is Fun

http://www.dwiller.com/Challenges/Electricity%20For%20Fun.pptx

Lingo

An Arduino based programming kit with untrasonic sensor, buzzer and LEDs Contact dw@dwiller.com

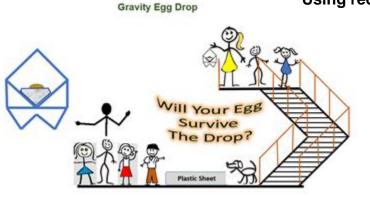
Dancing Clown, Robot, Santa

http://www.dwiller.com/Challenges/Clown.pptx

Free to borrow locally Contact enquiries@schoolsliaisoncommunity.net

Balloon Car

Made from recycled materials, the school supplies the recycles materials, balloons and tools



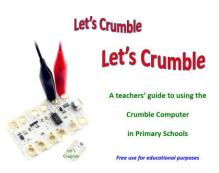
http://www.dwiller.com/Challenges/Baloon%20Car.pptx

Egg Drop

Using recycled Materials

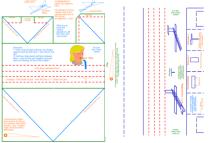
School to provide recycled materials and eggs

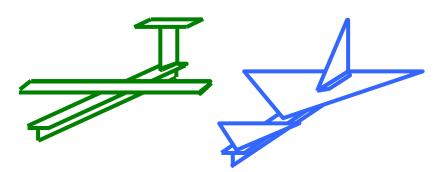
Rockets



- Sheets Of Paper
- Straws
- Recycled materials
- •Tape or Glue
- •Measuring Tape or Ruler
- Stopwatch (use a Smart 'Phone

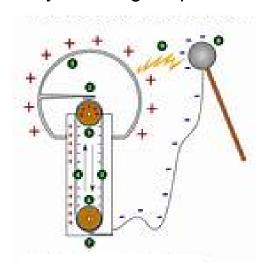
School to provide materials, use mobile phone as stopwatch


Lets Crumble



Materials:

- Cumble Computer Kit
- Recycled Materials
- Sticky Tape and Glue


A4 Paper Aeroplanes (just print the A4 plans) ½ hour

Just photocopy the relevant slides http://www.dwiller.com/Challenges/Flight.pptx

Van Der Graaf Generator Are you a Bright Spark

Danger to Medical Electronics

Keep 2metres away if you have hearing aids, pacemakers, brain implants, etc.

Also keep mobile phones, I Pads, and computers away.

The following programming, Basic, Excel and Access exercises are suitable for pupils to challenge themselves as the instruction slides are complete.

Introduction to Programming

```
rem "my first program"
rem "add two numbers together"
input "type in the first number > "; a
input "type in the second number > "; b
answer = a + b
print a, "+", b, "=", answer
end
```

Using Basic programming language. Input, add, subtract, multiply, divide, display result, etc.

School to load Just Basic to the computers to be used.

Run the programme by clicking >

Code and Decode - Send Coded Messages to Friends

Encoding by a given number

```
rem This program ask for a string and then
rem displays a list of ASCII codes for each
rem character in the entered string
input "Please enter a string >"; entry$
school to
input "Please enter a number up to 100 > "; a
for index = 1 to len(entry$)
result$ = str$(asc(mid$(entry$,index,1))) + " has ASCII code of "
+ str$(asc(mid$(entry$,index,1))+a)
result2$ = result2$+chr$(asc(mid$(entry$,index,1))+a)
print result$
next index
```

Type in the message, line by line, code the line, display. Then the reverse to decode.

School to load Just Basic to the computers to be

Prime Numbers

rem this program inputs a number

Square Root

```
rem then calculates if it is a prime number
input "Input a Number > "; x
print x

rem Now find the square root of x

a = sqr(x)
print a

rem Now rationalise this to a whole number ( use int ) but add 1 to be sure of trying all numbers
up to the square root
a = int(a)+1
print a
```

Coding using Just Basic, as above, to find prime numbers
School to load Just Basic to the computers to be used.

Pythagorean Triangles

```
rem is a b c a right-angled triangle where a b and c are integers (whole numbers).
rem input the maximum length for one side as x
input "maximum length for one side > ":x
rem use for a = 1 to x for one side
answer$ = "The following are Right-Angled Traingles" +chr$(13)
for a = 1 to x
  rem use for b = 1 to x for another side
  for b = 1 to x
  c = \mathbf{sqr}(a*a + b*b)
  print a,b,c
   if int(c)=c then
    rem we have a right angled triangle sides a, b, c
    rem use str$(x) to print x inside a string called answer$
answer$ = answer$ + str$(a) + " " + str$(b) + " " + str$(c) + chr$(13)
  end if
 next b
next a
print answer$
end
```

Coding using Just Basic, as above, to find Pythagorean whole number triangles) e.g. 3,4,5 or 5,12,13 School to load Just Basic to the computers to be used.

The Vault

An Excel Spreadsheet exercise with mail-merge to Word

Complex If statements.

Based on a real life project

Microsoft Access Tutorial My Holiday Home

Requires the computers to have Microsoft Access

My Holiday Home M 0 TABLE TOOLS HolidayHome HOME DATABASE TOOLS ≪ Table1 All Access Objects ID ▼ Click to Add (New) Table Table1 Conventions: - T Tablename We need to conform to a - Q Queryname convention throughout this - F Formname exercise so that others can see - P Printoutname what we have done and can